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ABSTRACT

Pipeline techniques have been successfully applied to speedinc up

processing in both ge;;eral and special purpose digital computers. Application

of these techniques to non-recursive (FIR) filters has been suggested and is

quite straightforward. Application to recursive (IIR) filters has not

previously been shown. in this paper, the technique for applyinq pipeline

techniques to recursive filters is shown and the advantages and disadvantaqes

of the technique are discussed. Using these techniques, recursive digital

filters operating at hitherto impossibly high rates can be designed.
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High-Speed Recursive Digital Filter Realization

ABSTRACT

Pipeline techniques have been successfully applied to speed-Ing up proc-

essing in both general and special purpose digital computers. Application of

these techniques to non-recuirsive (FIR) filters has been suggested and is quite

straightforward. Application to recursive (11R) filters has not previously

been shown. In this paper, the technique, for applying pipeline techniques to

recursive filters is shown and the advantages and disadvantages of the tech-

niquie are discussed. Using these techniques, recursive digital filters oper-

ating at hitherto imnpossibly high rates can be designed.



INTRODUCTION

Digital filters have an important place in the technology of processing

signals. Because of the sample theorem, the sampling rate which is also the

clock rate of the filter, must be higher than twice the highest frequency

component in the signal to be filtered. Thus the use of diSital filters in

real time application involving high frequencies demands high sample rate.

Pipel ine techniques are well known [1,21 ways to increase the clock rate

(throughput) of, a particular state-of-the-art realization of a logic module.

For example, the Cray I supercomputer has a clock rate of 80 Mhz and requires a

7 stage pipel ine multipli er to perform 64-bit floating point multiplication at

the rate of one product every 12.5 ns. [31.

Other workers have investigated residue number techniques to obtain high

rate digital filters [4]. However, difficulties in implementing division by a

constant impose limitations on such real izations, making scal ing awkward and

precluding anything resembling floating point.

Pipeline techniques can thus be used to produce multipliers and adders

that operate at the maximum clock rate possible for a given state of the art of

logic devices. For example, TRW makes a non-pipel ine 16 bit integer multiply

chip with input and output registers that can be operated at the rate of about

9. MHz. Pipeline techniques could be applied to that design, producing a new

chip that mlght have three stages and operate at near 40 MHz.

Discrete logic real ization of the basic functions of multiplication and

division can yield even better performance.- At the extreme we have some of the

integrated circuit ECL lines. Based on the experience gained with the pipeline

supercomputers, it is reasonable to expect that a three stage 12-bit integer

multiply and I to 2 stage 16-bit integer adder could be built to operate at

around 80 MHz. Floating point operation could be obtained at the same rate

2
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with a cost of perhaps only 2 additional stages for the multipi ler and 3 more

for the adder.

What finally limits *he clock rate in a pipeline system is the net delay

of all logic and the register delay between successive registers, however

pipeline techniques will yield the highest throughput or clock rate possible

with a given state of the art.

Now it should be clear why we should consider the application of pipeline

techniques.

1) higher clock (sample) rates are possible for a given state of the

art.

2) more complex operations (i.e. floating point) are possible for a given

state of the art and clock rate.

Pipeline techniques can be easily applied to non-recursive systems, that

is, systems without feedback. In the digital filter arena, this would

correspond to non-recursive or Finite Impulse Response (FIR) filters. These

techniques are straight forward and proceed as follows:

An FIR filter can be described by a transfer function in the delay

.operator (z- 1 or D) as in (1)

Y - H(Z' 1 ) U ao + aj z' +...+ am z'1m (1)

Figure I shows the real ization of such a filter using delayless add and

multiply modules as well as unit delays. That realization is unrealistic and

does not capitalize on the advantages of pipeline procersors as discussed

above.

Let us suppose that we have a 1-stage pipeline adder and a 3-stage

pipel ine mul tipl ier.

3
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Figure 2 shows a pipeline realization of the transfer function given in

(1). In fact, (1) is not exactly realized because of the delay of the adders.

Instead the output of the filter Is y delayed by 7 clock periods. This,

however, is not a serious difficulty.

Thus, pipeline realization of FIR filters Is straight forward, costinq

only an added delay in the resulting output sequence rate, and perhaps some

adoitional adders over the realization of figure 1, if the adder has more than

one stage.

What then about doinn this for fIR filters? Applying pioeline techniques

to recursive calculations Is not so straightforward as it is in the non-

necursive case, and was first reported in [1] in connection with accumulator

desi gn.

In the next section we shall consider the design of recursive (IIR)

filters. Following that, we discuss the general attributes of the solution and

some of the unsolved problems associated with the technique. Finally, an

example of a sixth order Butterworth filter is treated, to illustrate the

technique.

J • ...



PIPELINE RECURSIVE DESIGN

An nth order recursive or Wnfinite Impulse Response (1IR) filter can

be characterized by a ratio of two nth degree polynomials in z-1 , the delay

operator, as shown in (2)

ao + a~z- +.."+az A(z)

1 - biz' I b2z. - ... - bnZn x = " x (2)

This representation can be expressed uiing D, another notation for the

delay operator, as shown in (3). Time is measured in integer steps by the

index i.

SA(D) (a. + alD + " +" + amDm) -(1)
) x(i) - b0 n (3)

where

Dkx(i) - x(i-k)

Rearranging (3) yields the familiar recursive formulation of the filter

equation, as shown in (4)

y(i) - (a0 + a1d + ... + amDm) x(i) + (biD + ... + bnDn) y(i) (4)

Equation (4) leads directly to the canonical representation of the filter as

shown in figure 3, assuming the availability of a multiply-add unit with unit

delay (one clock pulse period delay). This real ization actually does not yield

y, but in fact produces Dy, y delayed by one clock pulse period. The canonical

form shown in this figure can be realized, but unfortunately because the

mtiltiply-add unit is very complex, the realization will be quite slow. If we

assmne 12 bits of significance to the representation of the numbers in the

filter, 4e find that the unit has ":wo 1-input, 12-bit constant multipliers
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fý-•dýng a three-input by 12-bit adder. All of this complexity forces the clock

puITa period to be very long, and the clock or sampling rate as a consequence

to be Iow. A typical value or clock rate using state-of-the-art Schottkey

integratea circuit PRO•1s and adders would be on the order of 10 MHz. A slight

improvemert in the rate of operation is possible if we use the basic module

shc.in in figure 4a. A delay of 1 clock pulse period is produced by the output

register. This module could be built to operate at a clock rate of perhaps 12

MHz, compared with the real ization.of figure 3.

14hat is desired is some means to take advantage of higher clock rate pipe-

line real ization of the basic multiply-add module, thus producing a higher sam-

pling rate realization of the recursive digital filter.

In order to increase the clock rate of the multiply-add unit, we first use

the two input version, and then insert several registers for intermediate re-

sults in the coefficient multiply and adder sections. For example., a ?-stage

version is shown in Figure 4b that could be made to operate at 16 M Hz. The net

result is a km + ka-stage (register) pipeline multiply-add unit as shown in

figure 5, with km stages involved in the coefficient multiply and ka stages

in the adder.

When we attempt to use the module of figures 4 or 5, we find it impossible

to insert it in the feedback loop, preserving a minimum delay of only one. So,

if we are to use the pipeline module, some other way must be found.

For the purposes of the derivation which follows, we will restrict our

consideration to second-order filters, that is m-2, n=2. This in no way limits

the result, for the process used is not dependent on n, except for the value of

the individual coefficients. On the other hand, higher order filters can also

b3 realized is the cascade of Fn/21 2 nd order filters, and at most one

filter of lower nrder.

6



Now we let n-2 and consider that specific case of

y A(z"1 ) a0 + a1 z'I + a2z"2

SB(Z- L 1 - b z'1 - b2 z'z

or represented :n terms of the Jay operator 0, t.he usual computer

representation of delay.

x(i)* a0 +al + a2D2

M 1 - b1 D (6)Z

Writing this in a different form wo have

y(i) a (a0 + alD + a2D2 )x(i) + (b D + b2D2 )y(i) (7)

which can also be written in difference equation form:

Y ax .aox t1 + a2x1-2 + (bly- 11 + b2 yt- 2 ) (8)
a +ax +a +

For subsequent development we will use (7); furthermore, we will omit the (i)

notation. We will relate that form to the other forms where appropriate.

Let us first ignore the A(D) polynomial by substituting

x' - A(D)x (9)

into (7) yielding

y - x' + (b1Dy + b2D2 y) (10)

Delaying (10) and substituting for Dy in (9) we obtain

y - x' + bi!Dx' + bD 2y + b2D3y) + b2D2y

7



or

2 2 3y- (1 + bD)x' (b + b2 )D2y + bb 2 y (11)

(11) is now a third order dificrence ,"quatio. describing the same digital fil-

ter. That is to say, the filter described by (11) has the same traosfer char-

acteristic as the one described by (7) or (10). Delaying (10) by 02 and

substituting into (11) yields

y -[ + b 0 + (b2 + b2 )D ]x

+ (b +b 3)3 y + (b 2 + b2 b4(2
1 (2~ 2  1 3 3 2 b1 b2)Dy (2

In general, successively more delayed versions of (10) can be substituted,

raising the order of the difference equation, but, more importantly, raising

also the minimum delay associated with the feedback y terms. The general

higher order difference equation has the following general form, provided we

started from a second-order equation:

- c .. fP)o 4) 2 + ... + cp

p

+ b(P)DP+ly + b(P)DP+2y (13)p+1 p+2

In fact, if we began with an nth order differen.e equation, we would have

an equation of p4'n order resulting from the foregoing process as shown in (14)

y * EI + (P' O + ... + a(P) Dp]x'P .
+ b(P)DP+, + + b(P)DP+ny (14)

p+1 p+n

The coefficients det and FoPe can be csalculated by following the processi I
described above in detail. For exaiiple., it should be clear from (12) that.



(2) b2 (2 ~ b2

;, 2 22b( •2) 2b bl + b22 (2 b + b2b

2b1b2+ 1 4 b2  .bb 2  (5

%J..ra the erigina• b coefficients are from (10). We will cover the process in

det.ail a little later in this section,

SNow let us recall vhat x' is in terms of the oriqinal fIR filter as des-

crild in (7). Substituting x' - A(D)x into (13) yields:

Sy ° I+ a(P) D + ... + a(P) nPi [a 0 + ai 1 ÷ a 2 D2 I
i+ ,(P) P"Iy + h (P)DP+2 )

+ "(O?__1 + p+2 (16)

This equattion vhen multipl ied out for the case of p-2 yields (17)

Sy- [a (2 + 2)D + ... + a 2 ) D4]x

+ (2) 3 (2) D4

+ yy b A (17a)

and

= 
4n Ea2 (2)~ + (2 ~(2 D4]

+ [b (2) 3 w, + b )0D4 w'] (18a)

These tvo equations look very similar now, the only difference being that

the non-recursive parts (18a) is the non-recursive part of (17a) delayed by

A + 4. If both sides of (17a) are delayed by that amount, (17b) results:

DA+ 4y D DA+ 4 [a (2) + + ... + (2)4

+ [b( 2 )D&+7y + b(2)Da+8 y] (17b)

g
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Finally, it should be noted that Da+ 4y in (17b) is the same as w' in

(18a). substituting 0 +4y . w' in (17b) produces (17c):

w- wD+4 E•a + a( 2 ) + ... + a4(2 )D4 ]x0 14
+ [b(2)0 3 w- + b(2)D4 wi' (17c)

which is the sane as (18a).

What this all means is that the structure tf figure 6 will produce an out-

put w' which is simply the desired signal y, delayed by 4+4 sampling periods.

This digital filter structure uses pipeline logic units in both the recursive

and non-recursive portions to real ize the desired output.

The design s•itll needs to be completed, even though the heart of the

structure has been developed. Figure 7 shows the structure of the non-

recursive portion of the filtor to complete the example.

The circuit of figure 7 produces D4[ao + al' +...÷ a,04)x which

corresponds to: the DAOao + alO +...+ a40 4 3x term required as the out-

put of the non-recursive part of figure 7. Therefore, the pipeline digital

filter of figure 7 combined with figure 6 produces 0 +4y, that is y, de-

layed by 8 sanmple periods.

Now we return to the calculation of the O) and bS P)

coefficients. :More general relations than (15) can be developed in difference

equation form with respect to p.

Starting with the p augmented order (p+2 order) difference equation (13)

we can derive the p+1 augmented order equation by substituting for oP+lY

[(10) delayed by 0P+1) Into (13).

10



y- M + G(P) o+ .. + (p) Dp]x'
p

+ b(pP EDP+' x' +(b Dp+2 Y + b Dp+a3 A,)
p+112

+b(P)D•P+ 2 y

P+2

ym [1. +4QP) D + + ... ) DP + b~p Dp-'')x

+ b(p) bI + b(p)) Dp+2 y + b(p) b2 D" 3y (19)

Sp 1 P+2 p+I

From (19) we can see -hat

p44 p+1 2a
b(p+1) - b1 + b(p)(2b)

p+2 p+1 p+2

b - b(p) b2  (20c)p+3 p+ 2

tWhere aip)- 1. •o). - b,°and b2 "

Table 1 shows the values of the coefficients of (13) for the values of p from 0

through 5 as derived from (20). Furthermore, multiplication of the pth

order polynomial

P) ( +...+ )

by the original

a0a + A1D +a 2D2

yields the pnlynomial

a(p) + afP)o. +...+ a(P)D•Z

1p

7.. ,



as shown In (16) and (18). Table 2 shows the values of ajP) for p

from 0 through 5.

The unique structure of this realization, which differs from conventional

realizations of digital filters is contained in the recursive portion, where

the basic feedback loop involving the longest delay passes through p+2 pipeline

stages, for the realization of a 2nd order filter. In the example devel-

oped, p was 2, causing us to use a 4 th order pipeline filter represen-

tation of the original 2 nd order filter.

In general, we assume we have ka stage pipeline add units and km stage

pipeline nmultipl lers. The structures of the ral ization of the feedback portion

of the filter would be as shown in figure 8. Since the maximum delay around

the loop must match the p augmented difference equation order, we have

p- 2ka + km- 2 (21)

The FIR portion of the filter is shown in general terms in figure 14.

From this figure, it should be clear that

A-a - og2(ka)Ik + ka +

and that the over all delay is therefore

A + 2ka [ og2 (ka ka + 3ka + ýM (22)

STABILITY ISSUES

In the previous section we have seen the general orocess of realization of

a digital filter transfer function using pipelinemultiply-add units with delay

2. We have also shown a realization using 2-stage multiply-add units. i-);u

essence of the techique is to reprtsent a second-order section by means of a

(2+p)th order section of a particular form, where p is determined by the

number of stages in the pipel ine multiply and add units.

12
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We know from other considerations that the transfer function of the higher

order real izatlon must in fact be the same as the original and therefore must

have the tame poles and zeros in the z plane. Thus, the operation Vhich trans-

forms (7) into (17) can be thought of in the following way:

1H,(z'1) (30 + ajz 1 + a z-) (I + 4P)z'y ... + M(P)Z-P)

1 2+*1 p

a~") +. a(P) Z-1 +. + 4(P z-17

I - btP) zjP . b0P) z-P-Z (24)
p+1 p+2

Where the coefficients of the a polynomial depend on the original bI and

b2 of (5) and (7). These a coefficients are governed by (20) and some were

tabulated in Table lb. Thus, we raise the order of the denominator, introduc-

ing p new poles and corresponding cancelliatg zeros. These new poles correspond

- to the roots of

*0 a + (P) D + . p (?5)

The roots of %(0) of course are the poles in the z-1 plane and are

the reciprocal of the poles in ziplane.

One concern in the realization is that the filter be stable, that is, that

"it have an impulse response which decays to zero. A sufficent condition for

the stability of a digital filter with transfer function H(z" 1 ) is that

the poles of H(z"1) in the z"1  plane lie outside the unit circle.

and that the order of the numerator (-m) be less than or equal in magnitude to

the order (-n) of the denominator. A more familiar sufficient condition is

"I that the poles of the transfer function of z (H(z)) be inside the unit circle.

"13



Now, if we start with a st able filter, we would like U~ be assured that

the poles of the augmented order fil ter, all be outsido the unit circle in thP

z- pl ane. We -desire this because, even though the added poles are

cancelled by the zeros of (1 + Mpz1+ ... + Cip~z'P), realization itperfec-

tions will prevent exact cancellation and the augmented filter would be

unstable.

In order to examine the stability question, we will make use of Jury's

stabil ity test [61 as appliled to the successively higher- degree denominator

polynomials in z as p increases.

We start with the denominator of (5), written as a polynomial in z

P(z) - 2 _ b Iz - b 2  (26)

To insure that the original poles of (5) are inside the unit circle and

hence that the original filter is stable, we apply Jury's test with- necessary

conditions:

P(1) - 1 -b, - b 2 > 0

( %)l(1  I1 + b I b 2 > 0

and sufficient condition: (27)

b2 I

Hence, for this second-order digital filter to be stable, the values of bj

and b2 must be in the shaded area as sho wn in Fig. 10. Note that this is the

-- case whien p - 0, i.e., no augmentation.

Now, assuming that the original filter transfer function (5) is stable,

i.e., (27) is satisfied, it is desirabl to determine conditions to assure

14



stability of the new p poles introduced in the system when the transfer

function is p-augmented. For p a 1, the new polynomial introduced in the

numerator and denominator is

F(z) - z + b1  (28)

Applying Jury's test, conditions for stability are

F(1) 1 + t > 0

(29)

(-i)"F(-l) 1 - b1 > 0

This condition, I b I< 1, is shown graphically in figure 11. Similarly, for

p a 2, the added polynomial is

F(z) - z2 + blz + (b13 b2 .) (30)

Jury's test gives conditions for stable roots. The necessary conditions are

2

,..F(1) -I + bI + (b I + b2) > 0"

(.1 )nF(-l) - 1 - bI + (b2 + b2) > 0 (11)

and the sufficient condition is

l 2 + b2  < 1

The region defined by conditions (31) is shown graphically in figure 12

Finally, for p - 3

F(z) z 3 + b Z2 + (b2 + b2 )z + (b3 + 2b b2)

15
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and the conditions for stable poles are (figure 13):

a +b 1 + 2 + 3F(1) - 1 + 15 + (bI + b2 ) + (b 1 + 2b 1b2 ) > 0

(- 1 )nF(- 1 ) . 1- b+ (b2 + b2) - (b3 + 2blb2 ) >0 (32)

b 3 + 2b b2  <
13 2 1 ! 3<

1(b +2b bl) 2 >1 b(b 3 + 2b~b,) -(b 2 + b2)

This procedure can be continued for higher values of p; In fact general

stability tests based on Jury's test have b^ePn developed [61. Unfortunately,

those tests are cumibersome to apply.

Instead, let us take another approach.

From figures 10-13 it may be observed that as the value of p increases,

the area of stabil ity (the shaded areas in the figures) tends to increase. It

was seen S-aphically that as p increased, the stable region came to be closer

and closer to the original shaded area for p - 0, i.e., figure 10. This leads

Sto the obvious conjecture that all stable filters have a stable augmented

filter for some large enough p.

We will follow the procedure suggested by Voelcker [71 for Block Filters

to show that for a large value of augmentation, p, the pipelined version of the

original filter will always be stable, provided that the original second order

"filter is stable. This is a very important and useful conclusion and implies

that an augmented stable realization is always possible if the original trans-

fer function is stable. The proof for this fact follows:

Since the process of augmentation implies multiplying the numerator and

the denominator by the same polynomial, the original transfer function may be

equated to the augmented transfer function as

16



1)(z) .z .P I + h to) o + - (pi..z. )

-_ P44 p+?

where (z) Is the numerator of the original transfer functoon. ilenoting the

denominator of the original transfer function as D(z), since this original fil-

ter is stable, the roots of D(z) are inside the unit circle. Figure 14(a)

shows the original filter where Hp(z) is a pole only function represent'nq

the denominator, (t/D(z)) of the original filter.

The process of augmenting the difference equation suggests building the

filter as shown in figure 14(b) where

a(z) (P) + zp 1 * "" + zP

and G(z) b(p)l + b~pz

Thus N(z) D7- 
(33).

p 1 - p

Hence, the nonrecursive transfer function e(z) may be written as

a(Z) - Hp(Z) - Z "(p+ z) 
(34)

Since Hp (z) is a pole only transfer function
p1

H p(Z) z
. ii I-.-i

2 aI

17

• ' *-7 ...



Taking the inverse transform

hp(n) = 2 a zn

ial

Since z1 and z are the initial po'es, they are inside the unit cir-

cle, Hence h P(n) is an infinite seqiuence decreasing in maqnitude. If the

sequence is truncated at the (p + 1) term, the remaining portion of the

sequent

n¶ iz n z o 1, .. p

h p(n) - j-l

0 otherwise

"A', - Taking the z-transform

p -n
H Z h p (n)z

p 2 aznz-n

K- J az

I- 
'2 z

(zi/Z) - i(Z/Z

18
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Thus,

.^ .(pl)2 atztP+I

Hp(z) H(Z) - l I (35)

Comparing (34) and (35) and, since ^(z) is a finite Impulse response

transfer function, equating' p(Z) and a(z)
p

G(z) 2 a zip+1

"11

Thus

2 aizi ID(z)
G(z) / (36)

1M31

Thp Intent of this procedure is to prove that, for some high value of p, all

roots of a(z) are inside the unit circle in the z-domain. From (33)

B(z)e(z) - 1 - z (P+')G(z) (37)

Since 0(z) Is the denominator of the original transfer function, all roots of

0(z) are inside the unit circle. Hence all roots of a(z) are also inside if,

and only if, all roots of the right hand expression of (37) are inside the unit

circle. To do this, let tilde (-) denote the result of the mapping

"z-1-* z, i.e., 7W(z) u f(z"1 ) and W(z) is defined as

1W --z(P1)V(z) --d(z);(z) (38)

All roots of'D(z) are exterior (outside the unit circle). Hence, all roots of

a(z) are exterior if all roots of A(z) are exterior. To prove this, Rouche's

theorem is used which states that: "If f(z) and g(z) are analytic inside and

on a closed contour C, and jg(z) < 5f(z) 5on C, then f(z) and f(z) ' g(z) have

ig



the same number of zeroes inside C." Clearly, A in (½ 3 s anaty-ic within and

on the unit circle. The constant "'T has no interior zeroes. r.ence A(z) wil'

have no interior zeroes if, on the unit circle,

Z z(P+ z)' j 1 , z = ej3  (39)

From (4.20),

Sz ( z eJ (p+1)e I z•Pell (40)

But zi < I for all i because these are poles of the original filter. Thus,

for some value of p greater than some critical value, equation (40) will satis-

fied. Note that (40t may be satisfied for smaller value of p also.

From the above discussion, it may be concluded that for some high value of

augmentation, it is always possible to ensure that a(z) has roots inside the

unit circle. Since these roots are the new additional poles of the augmented

system, thz nevi high order transfer function would be stable.

As a rescit of this fact, the following design method is suggested.

We assume that the designer is given a stable recursive digital filter

transfer function H(z) and a desired sampling (clock) rate of operation, fs.

1. Find km stage p peiin, multiply and ka stage pipeline add units

that will operate at clock frequency fs.

2. Factor H(z) into x (i - 1 if n is odd) 2 nd order (and if n is

odd, at most one Ist order) transfer functions.

Hz(z) = H(Z). H2 (z) ... H (z)

where x = rn/21

3. For each Hi(z), i = 1, 2, ... t. Realize Hi(z) as follows:

a. Set p 2ka + km - 2 ,

20



b. Determine the polynomial 1 - b(P)z-p' - b(b)'P'? R z"
p+1 p+2 uRp( ),

c. Solve for the roots of B (Z"1 ) a 0 (41)
p

d. If all roots of B (z 1) - 0 are outside the unit cir-
p

cle, go to e, else set p a p + 1 and return to step 3b.

e. Ht(z) can be realized by a stable p augmented order difference

equation

a(P) + a(P)z'1 + ... + a•pZP•
H( 1 0 1 + (24)

1 b( zP- - b(P)Z-Pz" p+ " " p+2 "

where p > 2ka + klft - 2

Because the last result, we know that we can always find a large

enough p so that (24) will be stable.

In the next section, we will il!ustrate the method with an example filter

taken from the literature.

EXAMPLE

We will treat the Butterworth filter considered by Oppenheim and Shafer

[8]. This is a sixth order filter whose original transfer function H(s) is

given by

H •s) a 0.20238 (42)
H(s) (SZ+O. 396s+0. 5871) (,sz+1. 083s4{J. 5871) (sz+1.4802s+0. 5871)

Applying the bi-linear transformation, a sixth order difference equation is

obtained that can be factored in three second order filters.

H(z) - H1(z) • H2(z) • H3 (z) (43)

21



where

H(z) - 0007378(1 + 2zz1 + z -) (44a)
1 (1 - 1.2686 z-+ 0.7051 z"4)

H2(z)- (1 + 2z-1 + z- 2) (44b

(1 -1.0106 z-1 j- 0.3583 z44)

. 3(z) - (1 + 2z1 I +Z 2  z (44c)

(1 - 0.9044 + 0.2155 z.-

The poles in the z' 1 plare of these equations are as follows:

P1 u 0.8996 1 J.7804 (45a)

P 1  a,1.1909

P2 - 1.4103 ± J.8956 (45b)

!2z I" 1.6706

P3 a 2.0984 ± J.4870 (45c)

I3 2.1542

Thus all three of the factoring second order transfer functions arL

stable.

p augmented order difference equations of the form of (16) were derived

for each of the three sections, for values of p from 1 through 5. H1 and

H2 were unstable for p-i and stable for all values of p from 2 through 5.

H3 was stable for all values of p from 1 through 5.

If we had a 2 stage adder and a 2 stage multiplier, (21) would yield a p

of 4, which for our example adds stable poles to each section. The general

structure of each of the 2nd order (4-augmented) sections would be as shown in

figure 15.

22
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Finally, the values for the coefficient of edch of the multipliers would

be as shown in table 3.

Note that the a(4) coefficient for the first section are all on the

order of .001 in magnitude. These coefficient could easily be computed to more

significant figures, although realization of more significant figures in the

coefficient of an actual filter would require either scal irg or the use of a

floating point number system.

This example shows how an fIR filter can be realized using high rate pipe-

line modules, with the ultimate objective of achieving a higher sample rate

than possible with non-pipelined multiplier and adders.

23



S " iARY AND CONCLUSIONS

In this paper we have developed a method for applying pipal ire techniques

to the design of high speed recursive digital filters. Using these techniques,

recursive digital f ilters operating at rates hitherto limpossible can be

designed. The general structure of the filter and the method for calculating

the multipl ier coefficients is presented. The stability of the resulting real-

ization has been investigated and a technique for ascertaining the stab ility of

the real izat ion is presented.

A significant example taken from th~e literature illustrates the technique

aad dem~onstrates the existance of a stable, high rate pipeline real ization of a

practically useful filter.
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Coeff o" 0p+1 Coeff of 0•p+2

b(P) b(P)pP iIp+2

b1 b2
1 b1 + b2  b1 b2

2 jb 2
2 b + 2b bbl2b2 + bz

1 1 2 1 2 2 3
3 b 4 + 3b 2b +b 2  b4b + 3b 2b 2 +b

4 12 12 12 2
4 b5 + 4b 3b + 3b b2 b 4b+3

12 1 2 1 b2 3 1 b2 +b 24. l6 2 2 3 5 3 2 3b5+b1 Pb 2+6b1 b2 +b2  b1 b2+4b,b b2+3b1 b2

Table la. b's for p- 0. 1, ... 5.

(P)(P PT- (P) (P) (P)

0 1 0 0 0 0 0

1 1 b1  0 0 0 0

2 1 b, + b2  0 0 0

2 22

4 1  b1 b2 b 1 2~ 2 b1 13 2 b2 0
+- 3 4 2 2 5 3 3b 2

5 1 b1  b1 + 2 bi +2bib 2 bI+3b1 b2 b 2 b1 ,4blb 2 12 2

Table lb. a's for p- 0, 1, ,.. 5.
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High-Speed Recursive Digital Filter Realization
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Figure 4a. O3ne-stage pipeline muj~tiply-add unit

Figure 4b. One-stage pipeline MUltiPlY feedinq one-stage 
add
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Figure 5. ka km staqe. pipeline miultiply-add module
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Polynomial: F(z):z =z2b 1 z-b 2 a 0

Conditions for Stability'

I-b-b 2 >o .......

I+b 1-b 2 >o ...........

Ib2l<1(...
/b

2 2

I'
,el / -

Figure 10. Condition for stability of the original filter
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Polynomial - F(z)z+ '0

Conditions for Stability:

I+ bi>o ..........
1 -bI> ..0........

Figure 11. Condition \tor stability of the augmented filter: p-1
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Polynomial: F() z2 +b1 z +b2

Conditions for Stability,

1+ (b 2+ >0).........".

1~ 4jb. +b21 1..........Q

b2

bll

b1

Figure 12. Condition for stability of the auqinented filter: D-2
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polynomnial F(z)- Z3+blz2+(o0+bz),÷.fb3 2b

Conditions for Stability:"" CrdtifS1:b(b•÷b2;+(b•÷2b•b 2) > 0 ..........

1.oD(b b2 )b(b b3b2 ) > 0 .............. 0

I,) 2 1 1 ,l- j(b2+2bb 2)-(321 b .....bY"~4z)

Fig. I.3 Stability of auqnented filterb p-3
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Nz) H (Z)--• Y '.

(a)

H()z)

NS a a (Z +

( Z )Z . . .... . . . . . .

1 I

1 .

Figure 14. (a) Original transfer function (b) ýquivalent augmented transfer

function
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